Metamath Proof Explorer


Theorem afv2fvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fvn0fveq F A F '''' A = F A

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 F A A dom F Fun F A
2 df-dfat F defAt A A dom F Fun F A
3 1 2 sylibr F A F defAt A
4 dfatafv2eqfv F defAt A F '''' A = F A
5 3 4 syl F A F '''' A = F A