Metamath Proof Explorer


Theorem afv2fvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fvn0fveq ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 fvfundmfvn0 ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
2 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
3 1 2 sylibr ( ( 𝐹𝐴 ) ≠ ∅ → 𝐹 defAt 𝐴 )
4 dfatafv2eqfv ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )
5 3 4 syl ( ( 𝐹𝐴 ) ≠ ∅ → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )