Metamath Proof Explorer


Theorem afv20fv0

Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20fv0 ( ( 𝐹 '''' 𝐴 ) = ∅ → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 afv20defat ( ( 𝐹 '''' 𝐴 ) = ∅ → 𝐹 defAt 𝐴 )
2 dfatafv2eqfv ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )
3 2 eqcomd ( 𝐹 defAt 𝐴 → ( 𝐹𝐴 ) = ( 𝐹 '''' 𝐴 ) )
4 3 adantr ( ( 𝐹 defAt 𝐴 ∧ ( 𝐹 '''' 𝐴 ) = ∅ ) → ( 𝐹𝐴 ) = ( 𝐹 '''' 𝐴 ) )
5 simpr ( ( 𝐹 defAt 𝐴 ∧ ( 𝐹 '''' 𝐴 ) = ∅ ) → ( 𝐹 '''' 𝐴 ) = ∅ )
6 4 5 eqtrd ( ( 𝐹 defAt 𝐴 ∧ ( 𝐹 '''' 𝐴 ) = ∅ ) → ( 𝐹𝐴 ) = ∅ )
7 1 6 mpancom ( ( 𝐹 '''' 𝐴 ) = ∅ → ( 𝐹𝐴 ) = ∅ )