Metamath Proof Explorer


Theorem afv20fv0

Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20fv0 F '''' A = F A =

Proof

Step Hyp Ref Expression
1 afv20defat F '''' A = F defAt A
2 dfatafv2eqfv F defAt A F '''' A = F A
3 2 eqcomd F defAt A F A = F '''' A
4 3 adantr F defAt A F '''' A = F A = F '''' A
5 simpr F defAt A F '''' A = F '''' A =
6 4 5 eqtrd F defAt A F '''' A = F A =
7 1 6 mpancom F '''' A = F A =