Metamath Proof Explorer


Theorem afv2rnfveq

Description: If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2rnfveq ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 dfatafv2rnb ( 𝐹 defAt 𝐴 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )
2 dfatafv2eqfv ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )
3 1 2 sylbir ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )