Metamath Proof Explorer


Theorem afv2fv0b

Description: The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fv0b
|- ( ( F ` A ) = (/) <-> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) )

Proof

Step Hyp Ref Expression
1 afv2fv0
 |-  ( ( F ` A ) = (/) -> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) )
2 afv20fv0
 |-  ( ( F '''' A ) = (/) -> ( F ` A ) = (/) )
3 afv2ndeffv0
 |-  ( ( F '''' A ) e/ ran F -> ( F ` A ) = (/) )
4 2 3 jaoi
 |-  ( ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) -> ( F ` A ) = (/) )
5 1 4 impbii
 |-  ( ( F ` A ) = (/) <-> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) )