Metamath Proof Explorer


Theorem afvelima

Description: Function value in an image, analogous to fvelima . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelima
|- ( ( Fun F /\ A e. ( F " B ) ) -> E. x e. B ( F ''' x ) = A )

Proof

Step Hyp Ref Expression
1 elimag
 |-  ( A e. ( F " B ) -> ( A e. ( F " B ) <-> E. x e. B x F A ) )
2 1 ibi
 |-  ( A e. ( F " B ) -> E. x e. B x F A )
3 funbrafv
 |-  ( Fun F -> ( x F A -> ( F ''' x ) = A ) )
4 3 reximdv
 |-  ( Fun F -> ( E. x e. B x F A -> E. x e. B ( F ''' x ) = A ) )
5 2 4 syl5
 |-  ( Fun F -> ( A e. ( F " B ) -> E. x e. B ( F ''' x ) = A ) )
6 5 imp
 |-  ( ( Fun F /\ A e. ( F " B ) ) -> E. x e. B ( F ''' x ) = A )