Step |
Hyp |
Ref |
Expression |
1 |
|
funres |
|- ( Fun F -> Fun ( F |` { A } ) ) |
2 |
1
|
anim1i |
|- ( ( Fun F /\ A e. dom F ) -> ( Fun ( F |` { A } ) /\ A e. dom F ) ) |
3 |
2
|
ancomd |
|- ( ( Fun F /\ A e. dom F ) -> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
4 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
5 |
3 4
|
sylibr |
|- ( ( Fun F /\ A e. dom F ) -> F defAt A ) |
6 |
|
afvfundmfveq |
|- ( F defAt A -> ( F ''' A ) = ( F ` A ) ) |
7 |
6
|
eqcomd |
|- ( F defAt A -> ( F ` A ) = ( F ''' A ) ) |
8 |
5 7
|
syl |
|- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) = ( F ''' A ) ) |
9 |
|
fvelrn |
|- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) |
10 |
8 9
|
eqeltrrd |
|- ( ( Fun F /\ A e. dom F ) -> ( F ''' A ) e. ran F ) |