Metamath Proof Explorer


Theorem afvelrn

Description: A function's value belongs to its range, analogous to fvelrn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelrn
|- ( ( Fun F /\ A e. dom F ) -> ( F ''' A ) e. ran F )

Proof

Step Hyp Ref Expression
1 funres
 |-  ( Fun F -> Fun ( F |` { A } ) )
2 1 anim1i
 |-  ( ( Fun F /\ A e. dom F ) -> ( Fun ( F |` { A } ) /\ A e. dom F ) )
3 2 ancomd
 |-  ( ( Fun F /\ A e. dom F ) -> ( A e. dom F /\ Fun ( F |` { A } ) ) )
4 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
5 3 4 sylibr
 |-  ( ( Fun F /\ A e. dom F ) -> F defAt A )
6 afvfundmfveq
 |-  ( F defAt A -> ( F ''' A ) = ( F ` A ) )
7 6 eqcomd
 |-  ( F defAt A -> ( F ` A ) = ( F ''' A ) )
8 5 7 syl
 |-  ( ( Fun F /\ A e. dom F ) -> ( F ` A ) = ( F ''' A ) )
9 fvelrn
 |-  ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F )
10 8 9 eqeltrrd
 |-  ( ( Fun F /\ A e. dom F ) -> ( F ''' A ) e. ran F )