Step |
Hyp |
Ref |
Expression |
1 |
|
funres |
⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ { 𝐴 } ) ) |
2 |
1
|
anim1i |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) ) |
3 |
2
|
ancomd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
4 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
5 |
3 4
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐹 defAt 𝐴 ) |
6 |
|
afvfundmfveq |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
7 |
6
|
eqcomd |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |
8 |
5 7
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ''' 𝐴 ) ) |
9 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
10 |
8 9
|
eqeltrrd |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ''' 𝐴 ) ∈ ran 𝐹 ) |