Metamath Proof Explorer


Theorem afvelrn

Description: A function's value belongs to its range, analogous to fvelrn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelrn ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐹 ''' 𝐴 ) ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 funres ( Fun 𝐹 → Fun ( 𝐹 ↾ { 𝐴 } ) )
2 1 anim1i ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) )
3 2 ancomd ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
4 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
5 3 4 sylibr ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → 𝐹 defAt 𝐴 )
6 afvfundmfveq ( 𝐹 defAt 𝐴 → ( 𝐹 ''' 𝐴 ) = ( 𝐹𝐴 ) )
7 6 eqcomd ( 𝐹 defAt 𝐴 → ( 𝐹𝐴 ) = ( 𝐹 ''' 𝐴 ) )
8 5 7 syl ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐹𝐴 ) = ( 𝐹 ''' 𝐴 ) )
9 fvelrn ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐹𝐴 ) ∈ ran 𝐹 )
10 8 9 eqeltrrd ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐹 ''' 𝐴 ) ∈ ran 𝐹 )