Metamath Proof Explorer


Theorem afvelrn

Description: A function's value belongs to its range, analogous to fvelrn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelrn Fun F A dom F F ''' A ran F

Proof

Step Hyp Ref Expression
1 funres Fun F Fun F A
2 1 anim1i Fun F A dom F Fun F A A dom F
3 2 ancomd Fun F A dom F A dom F Fun F A
4 df-dfat F defAt A A dom F Fun F A
5 3 4 sylibr Fun F A dom F F defAt A
6 afvfundmfveq F defAt A F ''' A = F A
7 6 eqcomd F defAt A F A = F ''' A
8 5 7 syl Fun F A dom F F A = F ''' A
9 fvelrn Fun F A dom F F A ran F
10 8 9 eqeltrrd Fun F A dom F F ''' A ran F