Metamath Proof Explorer


Theorem afvelrn

Description: A function's value belongs to its range, analogous to fvelrn . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelrn FunFAdomFF'''AranF

Proof

Step Hyp Ref Expression
1 funres FunFFunFA
2 1 anim1i FunFAdomFFunFAAdomF
3 2 ancomd FunFAdomFAdomFFunFA
4 df-dfat FdefAtAAdomFFunFA
5 3 4 sylibr FunFAdomFFdefAtA
6 afvfundmfveq FdefAtAF'''A=FA
7 6 eqcomd FdefAtAFA=F'''A
8 5 7 syl FunFAdomFFA=F'''A
9 fvelrn FunFAdomFFAranF
10 8 9 eqeltrrd FunFAdomFF'''AranF