| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 2 |
|
releldm |
|- ( ( Rel F /\ A F B ) -> A e. dom F ) |
| 3 |
|
funbrafvb |
|- ( ( Fun F /\ A e. dom F ) -> ( ( F ''' A ) = B <-> A F B ) ) |
| 4 |
3
|
biimprd |
|- ( ( Fun F /\ A e. dom F ) -> ( A F B -> ( F ''' A ) = B ) ) |
| 5 |
4
|
expcom |
|- ( A e. dom F -> ( Fun F -> ( A F B -> ( F ''' A ) = B ) ) ) |
| 6 |
2 5
|
syl |
|- ( ( Rel F /\ A F B ) -> ( Fun F -> ( A F B -> ( F ''' A ) = B ) ) ) |
| 7 |
6
|
ex |
|- ( Rel F -> ( A F B -> ( Fun F -> ( A F B -> ( F ''' A ) = B ) ) ) ) |
| 8 |
7
|
com14 |
|- ( A F B -> ( A F B -> ( Fun F -> ( Rel F -> ( F ''' A ) = B ) ) ) ) |
| 9 |
8
|
pm2.43i |
|- ( A F B -> ( Fun F -> ( Rel F -> ( F ''' A ) = B ) ) ) |
| 10 |
9
|
com13 |
|- ( Rel F -> ( Fun F -> ( A F B -> ( F ''' A ) = B ) ) ) |
| 11 |
1 10
|
syl |
|- ( Fun F -> ( Fun F -> ( A F B -> ( F ''' A ) = B ) ) ) |
| 12 |
11
|
pm2.43i |
|- ( Fun F -> ( A F B -> ( F ''' A ) = B ) ) |