Metamath Proof Explorer


Theorem funbrafv

Description: The second argument of a binary relation on a function is the function's value, analogous to funbrfv . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion funbrafv FunFAFBF'''A=B

Proof

Step Hyp Ref Expression
1 funrel FunFRelF
2 releldm RelFAFBAdomF
3 funbrafvb FunFAdomFF'''A=BAFB
4 3 biimprd FunFAdomFAFBF'''A=B
5 4 expcom AdomFFunFAFBF'''A=B
6 2 5 syl RelFAFBFunFAFBF'''A=B
7 6 ex RelFAFBFunFAFBF'''A=B
8 7 com14 AFBAFBFunFRelFF'''A=B
9 8 pm2.43i AFBFunFRelFF'''A=B
10 9 com13 RelFFunFAFBF'''A=B
11 1 10 syl FunFFunFAFBF'''A=B
12 11 pm2.43i FunFAFBF'''A=B