Metamath Proof Explorer


Theorem afvelima

Description: Function value in an image, analogous to fvelima . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelima ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ∃ 𝑥𝐵 ( 𝐹 ''' 𝑥 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 elimag ( 𝐴 ∈ ( 𝐹𝐵 ) → ( 𝐴 ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 𝑥 𝐹 𝐴 ) )
2 1 ibi ( 𝐴 ∈ ( 𝐹𝐵 ) → ∃ 𝑥𝐵 𝑥 𝐹 𝐴 )
3 funbrafv ( Fun 𝐹 → ( 𝑥 𝐹 𝐴 → ( 𝐹 ''' 𝑥 ) = 𝐴 ) )
4 3 reximdv ( Fun 𝐹 → ( ∃ 𝑥𝐵 𝑥 𝐹 𝐴 → ∃ 𝑥𝐵 ( 𝐹 ''' 𝑥 ) = 𝐴 ) )
5 2 4 syl5 ( Fun 𝐹 → ( 𝐴 ∈ ( 𝐹𝐵 ) → ∃ 𝑥𝐵 ( 𝐹 ''' 𝑥 ) = 𝐴 ) )
6 5 imp ( ( Fun 𝐹𝐴 ∈ ( 𝐹𝐵 ) ) → ∃ 𝑥𝐵 ( 𝐹 ''' 𝑥 ) = 𝐴 )