Metamath Proof Explorer


Theorem aiota0ndef

Description: Example for an undefined alternate iota being no set, i.e., A. y y e. x is a wff not satisfied by a (unique) value x (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef , where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiota0ndef
|- ( iota' x A. y y e. x ) e/ _V

Proof

Step Hyp Ref Expression
1 nalset
 |-  -. E. x A. y y e. x
2 1 intnanr
 |-  -. ( E. x A. y y e. x /\ E* x A. y y e. x )
3 df-eu
 |-  ( E! x A. y y e. x <-> ( E. x A. y y e. x /\ E* x A. y y e. x ) )
4 2 3 mtbir
 |-  -. E! x A. y y e. x
5 df-nel
 |-  ( ( iota' x A. y y e. x ) e/ _V <-> -. ( iota' x A. y y e. x ) e. _V )
6 aiotaexb
 |-  ( E! x A. y y e. x <-> ( iota' x A. y y e. x ) e. _V )
7 5 6 xchbinxr
 |-  ( ( iota' x A. y y e. x ) e/ _V <-> -. E! x A. y y e. x )
8 4 7 mpbir
 |-  ( iota' x A. y y e. x ) e/ _V