Step |
Hyp |
Ref |
Expression |
1 |
|
alephfplem.1 |
|- H = ( rec ( aleph , _om ) |` _om ) |
2 |
|
fveq2 |
|- ( v = (/) -> ( H ` v ) = ( H ` (/) ) ) |
3 |
2
|
eleq1d |
|- ( v = (/) -> ( ( H ` v ) e. ran aleph <-> ( H ` (/) ) e. ran aleph ) ) |
4 |
|
fveq2 |
|- ( v = w -> ( H ` v ) = ( H ` w ) ) |
5 |
4
|
eleq1d |
|- ( v = w -> ( ( H ` v ) e. ran aleph <-> ( H ` w ) e. ran aleph ) ) |
6 |
|
fveq2 |
|- ( v = suc w -> ( H ` v ) = ( H ` suc w ) ) |
7 |
6
|
eleq1d |
|- ( v = suc w -> ( ( H ` v ) e. ran aleph <-> ( H ` suc w ) e. ran aleph ) ) |
8 |
1
|
alephfplem1 |
|- ( H ` (/) ) e. ran aleph |
9 |
|
alephfnon |
|- aleph Fn On |
10 |
|
alephsson |
|- ran aleph C_ On |
11 |
10
|
sseli |
|- ( ( H ` w ) e. ran aleph -> ( H ` w ) e. On ) |
12 |
|
fnfvelrn |
|- ( ( aleph Fn On /\ ( H ` w ) e. On ) -> ( aleph ` ( H ` w ) ) e. ran aleph ) |
13 |
9 11 12
|
sylancr |
|- ( ( H ` w ) e. ran aleph -> ( aleph ` ( H ` w ) ) e. ran aleph ) |
14 |
1
|
alephfplem2 |
|- ( w e. _om -> ( H ` suc w ) = ( aleph ` ( H ` w ) ) ) |
15 |
14
|
eleq1d |
|- ( w e. _om -> ( ( H ` suc w ) e. ran aleph <-> ( aleph ` ( H ` w ) ) e. ran aleph ) ) |
16 |
13 15
|
syl5ibr |
|- ( w e. _om -> ( ( H ` w ) e. ran aleph -> ( H ` suc w ) e. ran aleph ) ) |
17 |
3 5 7 8 16
|
finds1 |
|- ( v e. _om -> ( H ` v ) e. ran aleph ) |