| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephfplem.1 |  |-  H = ( rec ( aleph , _om ) |` _om ) | 
						
							| 2 |  | fveq2 |  |-  ( v = (/) -> ( H ` v ) = ( H ` (/) ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( v = (/) -> ( ( H ` v ) e. ran aleph <-> ( H ` (/) ) e. ran aleph ) ) | 
						
							| 4 |  | fveq2 |  |-  ( v = w -> ( H ` v ) = ( H ` w ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( v = w -> ( ( H ` v ) e. ran aleph <-> ( H ` w ) e. ran aleph ) ) | 
						
							| 6 |  | fveq2 |  |-  ( v = suc w -> ( H ` v ) = ( H ` suc w ) ) | 
						
							| 7 | 6 | eleq1d |  |-  ( v = suc w -> ( ( H ` v ) e. ran aleph <-> ( H ` suc w ) e. ran aleph ) ) | 
						
							| 8 | 1 | alephfplem1 |  |-  ( H ` (/) ) e. ran aleph | 
						
							| 9 |  | alephfnon |  |-  aleph Fn On | 
						
							| 10 |  | alephsson |  |-  ran aleph C_ On | 
						
							| 11 | 10 | sseli |  |-  ( ( H ` w ) e. ran aleph -> ( H ` w ) e. On ) | 
						
							| 12 |  | fnfvelrn |  |-  ( ( aleph Fn On /\ ( H ` w ) e. On ) -> ( aleph ` ( H ` w ) ) e. ran aleph ) | 
						
							| 13 | 9 11 12 | sylancr |  |-  ( ( H ` w ) e. ran aleph -> ( aleph ` ( H ` w ) ) e. ran aleph ) | 
						
							| 14 | 1 | alephfplem2 |  |-  ( w e. _om -> ( H ` suc w ) = ( aleph ` ( H ` w ) ) ) | 
						
							| 15 | 14 | eleq1d |  |-  ( w e. _om -> ( ( H ` suc w ) e. ran aleph <-> ( aleph ` ( H ` w ) ) e. ran aleph ) ) | 
						
							| 16 | 13 15 | imbitrrid |  |-  ( w e. _om -> ( ( H ` w ) e. ran aleph -> ( H ` suc w ) e. ran aleph ) ) | 
						
							| 17 | 3 5 7 8 16 | finds1 |  |-  ( v e. _om -> ( H ` v ) e. ran aleph ) |