| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alginv.1 |
|- R = seq 0 ( ( F o. 1st ) , ( NN0 X. { A } ) ) |
| 2 |
|
alginv.2 |
|- F : S --> S |
| 3 |
|
alginv.3 |
|- ( x e. S -> ( I ` ( F ` x ) ) = ( I ` x ) ) |
| 4 |
|
2fveq3 |
|- ( z = 0 -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) |
| 5 |
4
|
eqeq1d |
|- ( z = 0 -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` 0 ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 6 |
5
|
imbi2d |
|- ( z = 0 -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` 0 ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
| 7 |
|
2fveq3 |
|- ( z = k -> ( I ` ( R ` z ) ) = ( I ` ( R ` k ) ) ) |
| 8 |
7
|
eqeq1d |
|- ( z = k -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 9 |
8
|
imbi2d |
|- ( z = k -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
| 10 |
|
2fveq3 |
|- ( z = ( k + 1 ) -> ( I ` ( R ` z ) ) = ( I ` ( R ` ( k + 1 ) ) ) ) |
| 11 |
10
|
eqeq1d |
|- ( z = ( k + 1 ) -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 12 |
11
|
imbi2d |
|- ( z = ( k + 1 ) -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
| 13 |
|
2fveq3 |
|- ( z = K -> ( I ` ( R ` z ) ) = ( I ` ( R ` K ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( z = K -> ( ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( z = K -> ( ( A e. S -> ( I ` ( R ` z ) ) = ( I ` ( R ` 0 ) ) ) <-> ( A e. S -> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
| 16 |
|
eqidd |
|- ( A e. S -> ( I ` ( R ` 0 ) ) = ( I ` ( R ` 0 ) ) ) |
| 17 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 18 |
|
0zd |
|- ( A e. S -> 0 e. ZZ ) |
| 19 |
|
id |
|- ( A e. S -> A e. S ) |
| 20 |
2
|
a1i |
|- ( A e. S -> F : S --> S ) |
| 21 |
17 1 18 19 20
|
algrp1 |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
| 22 |
21
|
fveq2d |
|- ( ( A e. S /\ k e. NN0 ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( F ` ( R ` k ) ) ) ) |
| 23 |
17 1 18 19 20
|
algrf |
|- ( A e. S -> R : NN0 --> S ) |
| 24 |
23
|
ffvelcdmda |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` k ) e. S ) |
| 25 |
|
2fveq3 |
|- ( x = ( R ` k ) -> ( I ` ( F ` x ) ) = ( I ` ( F ` ( R ` k ) ) ) ) |
| 26 |
|
fveq2 |
|- ( x = ( R ` k ) -> ( I ` x ) = ( I ` ( R ` k ) ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( x = ( R ` k ) -> ( ( I ` ( F ` x ) ) = ( I ` x ) <-> ( I ` ( F ` ( R ` k ) ) ) = ( I ` ( R ` k ) ) ) ) |
| 28 |
27 3
|
vtoclga |
|- ( ( R ` k ) e. S -> ( I ` ( F ` ( R ` k ) ) ) = ( I ` ( R ` k ) ) ) |
| 29 |
24 28
|
syl |
|- ( ( A e. S /\ k e. NN0 ) -> ( I ` ( F ` ( R ` k ) ) ) = ( I ` ( R ` k ) ) ) |
| 30 |
22 29
|
eqtrd |
|- ( ( A e. S /\ k e. NN0 ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` k ) ) ) |
| 31 |
30
|
eqeq1d |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) <-> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 32 |
31
|
biimprd |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 33 |
32
|
expcom |
|- ( k e. NN0 -> ( A e. S -> ( ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
| 34 |
33
|
a2d |
|- ( k e. NN0 -> ( ( A e. S -> ( I ` ( R ` k ) ) = ( I ` ( R ` 0 ) ) ) -> ( A e. S -> ( I ` ( R ` ( k + 1 ) ) ) = ( I ` ( R ` 0 ) ) ) ) ) |
| 35 |
6 9 12 15 16 34
|
nn0ind |
|- ( K e. NN0 -> ( A e. S -> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) ) |
| 36 |
35
|
impcom |
|- ( ( A e. S /\ K e. NN0 ) -> ( I ` ( R ` K ) ) = ( I ` ( R ` 0 ) ) ) |