Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | altopthb.1 | |- A e. _V |
|
altopthb.2 | |- D e. _V |
||
Assertion | altopthb | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altopthb.1 | |- A e. _V |
|
2 | altopthb.2 | |- D e. _V |
|
3 | altopthbg | |- ( ( A e. _V /\ D e. _V ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |