Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | altopthb.1 | |- A e. _V |
|
| altopthb.2 | |- D e. _V |
||
| Assertion | altopthb | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthb.1 | |- A e. _V |
|
| 2 | altopthb.2 | |- D e. _V |
|
| 3 | altopthbg | |- ( ( A e. _V /\ D e. _V ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |