Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | altopthb.1 | ⊢ 𝐴 ∈ V | |
altopthb.2 | ⊢ 𝐷 ∈ V | ||
Assertion | altopthb | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altopthb.1 | ⊢ 𝐴 ∈ V | |
2 | altopthb.2 | ⊢ 𝐷 ∈ V | |
3 | altopthbg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐷 ∈ V ) → ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |