Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | altopthb.1 | ⊢ 𝐴 ∈ V | |
| altopthb.2 | ⊢ 𝐷 ∈ V | ||
| Assertion | altopthb | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthb.1 | ⊢ 𝐴 ∈ V | |
| 2 | altopthb.2 | ⊢ 𝐷 ∈ V | |
| 3 | altopthbg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐷 ∈ V ) → ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |