Metamath Proof Explorer


Theorem altopthc

Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)

Ref Expression
Hypotheses altopthc.1 𝐵 ∈ V
altopthc.2 𝐶 ∈ V
Assertion altopthc ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) )

Proof

Step Hyp Ref Expression
1 altopthc.1 𝐵 ∈ V
2 altopthc.2 𝐶 ∈ V
3 eqcom ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 , 𝐵 ⟫ )
4 2 1 altopthb ( ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 , 𝐵 ⟫ ↔ ( 𝐶 = 𝐴𝐷 = 𝐵 ) )
5 eqcom ( 𝐶 = 𝐴𝐴 = 𝐶 )
6 eqcom ( 𝐷 = 𝐵𝐵 = 𝐷 )
7 5 6 anbi12i ( ( 𝐶 = 𝐴𝐷 = 𝐵 ) ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) )
8 3 4 7 3bitri ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) )