Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | altopthc.1 | ⊢ 𝐵 ∈ V | |
altopthc.2 | ⊢ 𝐶 ∈ V | ||
Assertion | altopthc | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altopthc.1 | ⊢ 𝐵 ∈ V | |
2 | altopthc.2 | ⊢ 𝐶 ∈ V | |
3 | eqcom | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 , 𝐵 ⟫ ) | |
4 | 2 1 | altopthb | ⊢ ( ⟪ 𝐶 , 𝐷 ⟫ = ⟪ 𝐴 , 𝐵 ⟫ ↔ ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ) |
5 | eqcom | ⊢ ( 𝐶 = 𝐴 ↔ 𝐴 = 𝐶 ) | |
6 | eqcom | ⊢ ( 𝐷 = 𝐵 ↔ 𝐵 = 𝐷 ) | |
7 | 5 6 | anbi12i | ⊢ ( ( 𝐶 = 𝐴 ∧ 𝐷 = 𝐵 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
8 | 3 4 7 | 3bitri | ⊢ ( ⟪ 𝐴 , 𝐵 ⟫ = ⟪ 𝐶 , 𝐷 ⟫ ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |