Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | altopthc.1 | |- B e. _V |
|
altopthc.2 | |- C e. _V |
||
Assertion | altopthc | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altopthc.1 | |- B e. _V |
|
2 | altopthc.2 | |- C e. _V |
|
3 | eqcom | |- ( << A , B >> = << C , D >> <-> << C , D >> = << A , B >> ) |
|
4 | 2 1 | altopthb | |- ( << C , D >> = << A , B >> <-> ( C = A /\ D = B ) ) |
5 | eqcom | |- ( C = A <-> A = C ) |
|
6 | eqcom | |- ( D = B <-> B = D ) |
|
7 | 5 6 | anbi12i | |- ( ( C = A /\ D = B ) <-> ( A = C /\ B = D ) ) |
8 | 3 4 7 | 3bitri | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |