Metamath Proof Explorer


Theorem altopthc

Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)

Ref Expression
Hypotheses altopthc.1
|- B e. _V
altopthc.2
|- C e. _V
Assertion altopthc
|- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) )

Proof

Step Hyp Ref Expression
1 altopthc.1
 |-  B e. _V
2 altopthc.2
 |-  C e. _V
3 eqcom
 |-  ( << A , B >> = << C , D >> <-> << C , D >> = << A , B >> )
4 2 1 altopthb
 |-  ( << C , D >> = << A , B >> <-> ( C = A /\ D = B ) )
5 eqcom
 |-  ( C = A <-> A = C )
6 eqcom
 |-  ( D = B <-> B = D )
7 5 6 anbi12i
 |-  ( ( C = A /\ D = B ) <-> ( A = C /\ B = D ) )
8 3 4 7 3bitri
 |-  ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) )