Description: Alternate ordered pair theorem with different sethood requirements. See altopth for more comments. (Contributed by Scott Fenton, 14-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | altopthd.1 | |- C e. _V |
|
| altopthd.2 | |- D e. _V |
||
| Assertion | altopthd | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthd.1 | |- C e. _V |
|
| 2 | altopthd.2 | |- D e. _V |
|
| 3 | eqcom | |- ( << A , B >> = << C , D >> <-> << C , D >> = << A , B >> ) |
|
| 4 | 1 2 | altopth | |- ( << C , D >> = << A , B >> <-> ( C = A /\ D = B ) ) |
| 5 | eqcom | |- ( C = A <-> A = C ) |
|
| 6 | eqcom | |- ( D = B <-> B = D ) |
|
| 7 | 5 6 | anbi12i | |- ( ( C = A /\ D = B ) <-> ( A = C /\ B = D ) ) |
| 8 | 3 4 7 | 3bitri | |- ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) |