Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | altxpeq1 | |- ( A = B -> ( A XX. C ) = ( B XX. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq | |- ( A = B -> ( E. x e. A E. y e. C z = << x , y >> <-> E. x e. B E. y e. C z = << x , y >> ) ) |
|
| 2 | 1 | abbidv | |- ( A = B -> { z | E. x e. A E. y e. C z = << x , y >> } = { z | E. x e. B E. y e. C z = << x , y >> } ) |
| 3 | df-altxp | |- ( A XX. C ) = { z | E. x e. A E. y e. C z = << x , y >> } |
|
| 4 | df-altxp | |- ( B XX. C ) = { z | E. x e. B E. y e. C z = << x , y >> } |
|
| 5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( A XX. C ) = ( B XX. C ) ) |