Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | altxpeq1 | |- ( A = B -> ( A XX. C ) = ( B XX. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq | |- ( A = B -> ( E. x e. A E. y e. C z = << x , y >> <-> E. x e. B E. y e. C z = << x , y >> ) ) |
|
2 | 1 | abbidv | |- ( A = B -> { z | E. x e. A E. y e. C z = << x , y >> } = { z | E. x e. B E. y e. C z = << x , y >> } ) |
3 | df-altxp | |- ( A XX. C ) = { z | E. x e. A E. y e. C z = << x , y >> } |
|
4 | df-altxp | |- ( B XX. C ) = { z | E. x e. B E. y e. C z = << x , y >> } |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( A XX. C ) = ( B XX. C ) ) |