Metamath Proof Explorer


Theorem altxpeq1

Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpeq1 ( 𝐴 = 𝐵 → ( 𝐴 ×× 𝐶 ) = ( 𝐵 ×× 𝐶 ) )

Proof

Step Hyp Ref Expression
1 rexeq ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴𝑦𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ↔ ∃ 𝑥𝐵𝑦𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ) )
2 1 abbidv ( 𝐴 = 𝐵 → { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } = { 𝑧 ∣ ∃ 𝑥𝐵𝑦𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } )
3 df-altxp ( 𝐴 ×× 𝐶 ) = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ }
4 df-altxp ( 𝐵 ×× 𝐶 ) = { 𝑧 ∣ ∃ 𝑥𝐵𝑦𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ }
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → ( 𝐴 ×× 𝐶 ) = ( 𝐵 ×× 𝐶 ) )