Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | altxpeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ×× 𝐶 ) = ( 𝐵 ×× 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ) ) | |
2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } ) |
3 | df-altxp | ⊢ ( 𝐴 ×× 𝐶 ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } | |
4 | df-altxp | ⊢ ( 𝐵 ×× 𝐶 ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ×× 𝐶 ) = ( 𝐵 ×× 𝐶 ) ) |