Metamath Proof Explorer


Theorem altxpeq2

Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpeq2
|- ( A = B -> ( C XX. A ) = ( C XX. B ) )

Proof

Step Hyp Ref Expression
1 rexeq
 |-  ( A = B -> ( E. y e. A z = << x , y >> <-> E. y e. B z = << x , y >> ) )
2 1 rexbidv
 |-  ( A = B -> ( E. x e. C E. y e. A z = << x , y >> <-> E. x e. C E. y e. B z = << x , y >> ) )
3 2 abbidv
 |-  ( A = B -> { z | E. x e. C E. y e. A z = << x , y >> } = { z | E. x e. C E. y e. B z = << x , y >> } )
4 df-altxp
 |-  ( C XX. A ) = { z | E. x e. C E. y e. A z = << x , y >> }
5 df-altxp
 |-  ( C XX. B ) = { z | E. x e. C E. y e. B z = << x , y >> }
6 3 4 5 3eqtr4g
 |-  ( A = B -> ( C XX. A ) = ( C XX. B ) )