Metamath Proof Explorer


Theorem altxpeq2

Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpeq2 A = B C ×× A = C ×× B

Proof

Step Hyp Ref Expression
1 rexeq A = B y A z = x y y B z = x y
2 1 rexbidv A = B x C y A z = x y x C y B z = x y
3 2 abbidv A = B z | x C y A z = x y = z | x C y B z = x y
4 df-altxp C ×× A = z | x C y A z = x y
5 df-altxp C ×× B = z | x C y B z = x y
6 3 4 5 3eqtr4g A = B C ×× A = C ×× B