Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Alternate ordered pairs
altxpeq2
Next ⟩
elaltxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
altxpeq2
Description:
Equality for alternate Cartesian products.
(Contributed by
Scott Fenton
, 24-Mar-2012)
Ref
Expression
Assertion
altxpeq2
⊢
A
=
B
→
C
××
A
=
C
××
B
Proof
Step
Hyp
Ref
Expression
1
rexeq
⊢
A
=
B
→
∃
y
∈
A
z
=
x
y
↔
∃
y
∈
B
z
=
x
y
2
1
rexbidv
⊢
A
=
B
→
∃
x
∈
C
∃
y
∈
A
z
=
x
y
↔
∃
x
∈
C
∃
y
∈
B
z
=
x
y
3
2
abbidv
⊢
A
=
B
→
z
|
∃
x
∈
C
∃
y
∈
A
z
=
x
y
=
z
|
∃
x
∈
C
∃
y
∈
B
z
=
x
y
4
df-altxp
⊢
C
××
A
=
z
|
∃
x
∈
C
∃
y
∈
A
z
=
x
y
5
df-altxp
⊢
C
××
B
=
z
|
∃
x
∈
C
∃
y
∈
B
z
=
x
y
6
3
4
5
3eqtr4g
⊢
A
=
B
→
C
××
A
=
C
××
B