Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Alternate ordered pairs
elaltxp
Next ⟩
altopelaltxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
elaltxp
Description:
Membership in alternate Cartesian products.
(Contributed by
Scott Fenton
, 23-Mar-2012)
Ref
Expression
Assertion
elaltxp
⊢
X
∈
A
××
B
↔
∃
x
∈
A
∃
y
∈
B
X
=
x
y
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
X
∈
A
××
B
→
X
∈
V
2
altopex
⊢
x
y
∈
V
3
eleq1
⊢
X
=
x
y
→
X
∈
V
↔
x
y
∈
V
4
2
3
mpbiri
⊢
X
=
x
y
→
X
∈
V
5
4
a1i
⊢
x
∈
A
∧
y
∈
B
→
X
=
x
y
→
X
∈
V
6
5
rexlimivv
⊢
∃
x
∈
A
∃
y
∈
B
X
=
x
y
→
X
∈
V
7
eqeq1
⊢
z
=
X
→
z
=
x
y
↔
X
=
x
y
8
7
2rexbidv
⊢
z
=
X
→
∃
x
∈
A
∃
y
∈
B
z
=
x
y
↔
∃
x
∈
A
∃
y
∈
B
X
=
x
y
9
df-altxp
⊢
A
××
B
=
z
|
∃
x
∈
A
∃
y
∈
B
z
=
x
y
10
8
9
elab2g
⊢
X
∈
V
→
X
∈
A
××
B
↔
∃
x
∈
A
∃
y
∈
B
X
=
x
y
11
1
6
10
pm5.21nii
⊢
X
∈
A
××
B
↔
∃
x
∈
A
∃
y
∈
B
X
=
x
y