Metamath Proof Explorer


Theorem elaltxp

Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion elaltxp
|- ( X e. ( A XX. B ) <-> E. x e. A E. y e. B X = << x , y >> )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( X e. ( A XX. B ) -> X e. _V )
2 altopex
 |-  << x , y >> e. _V
3 eleq1
 |-  ( X = << x , y >> -> ( X e. _V <-> << x , y >> e. _V ) )
4 2 3 mpbiri
 |-  ( X = << x , y >> -> X e. _V )
5 4 a1i
 |-  ( ( x e. A /\ y e. B ) -> ( X = << x , y >> -> X e. _V ) )
6 5 rexlimivv
 |-  ( E. x e. A E. y e. B X = << x , y >> -> X e. _V )
7 eqeq1
 |-  ( z = X -> ( z = << x , y >> <-> X = << x , y >> ) )
8 7 2rexbidv
 |-  ( z = X -> ( E. x e. A E. y e. B z = << x , y >> <-> E. x e. A E. y e. B X = << x , y >> ) )
9 df-altxp
 |-  ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> }
10 8 9 elab2g
 |-  ( X e. _V -> ( X e. ( A XX. B ) <-> E. x e. A E. y e. B X = << x , y >> ) )
11 1 6 10 pm5.21nii
 |-  ( X e. ( A XX. B ) <-> E. x e. A E. y e. B X = << x , y >> )