Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( X e. ( A XX. B ) -> X e. _V ) |
2 |
|
altopex |
|- << x , y >> e. _V |
3 |
|
eleq1 |
|- ( X = << x , y >> -> ( X e. _V <-> << x , y >> e. _V ) ) |
4 |
2 3
|
mpbiri |
|- ( X = << x , y >> -> X e. _V ) |
5 |
4
|
a1i |
|- ( ( x e. A /\ y e. B ) -> ( X = << x , y >> -> X e. _V ) ) |
6 |
5
|
rexlimivv |
|- ( E. x e. A E. y e. B X = << x , y >> -> X e. _V ) |
7 |
|
eqeq1 |
|- ( z = X -> ( z = << x , y >> <-> X = << x , y >> ) ) |
8 |
7
|
2rexbidv |
|- ( z = X -> ( E. x e. A E. y e. B z = << x , y >> <-> E. x e. A E. y e. B X = << x , y >> ) ) |
9 |
|
df-altxp |
|- ( A XX. B ) = { z | E. x e. A E. y e. B z = << x , y >> } |
10 |
8 9
|
elab2g |
|- ( X e. _V -> ( X e. ( A XX. B ) <-> E. x e. A E. y e. B X = << x , y >> ) ) |
11 |
1 6 10
|
pm5.21nii |
|- ( X e. ( A XX. B ) <-> E. x e. A E. y e. B X = << x , y >> ) |