Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) → 𝑋 ∈ V ) |
2 |
|
altopex |
⊢ ⟪ 𝑥 , 𝑦 ⟫ ∈ V |
3 |
|
eleq1 |
⊢ ( 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → ( 𝑋 ∈ V ↔ ⟪ 𝑥 , 𝑦 ⟫ ∈ V ) ) |
4 |
2 3
|
mpbiri |
⊢ ( 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑋 ∈ V ) |
5 |
4
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑋 ∈ V ) ) |
6 |
5
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑋 ∈ V ) |
7 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ↔ 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) ) |
8 |
7
|
2rexbidv |
⊢ ( 𝑧 = 𝑋 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) ) |
9 |
|
df-altxp |
⊢ ( 𝐴 ×× 𝐵 ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ } |
10 |
8 9
|
elab2g |
⊢ ( 𝑋 ∈ V → ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) ) |
11 |
1 6 10
|
pm5.21nii |
⊢ ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) |