Metamath Proof Explorer


Theorem elaltxp

Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012)

Ref Expression
Assertion elaltxp ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ )

Proof

Step Hyp Ref Expression
1 elex ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) → 𝑋 ∈ V )
2 altopex 𝑥 , 𝑦 ⟫ ∈ V
3 eleq1 ( 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → ( 𝑋 ∈ V ↔ ⟪ 𝑥 , 𝑦 ⟫ ∈ V ) )
4 2 3 mpbiri ( 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑋 ∈ V )
5 4 a1i ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑋 ∈ V ) )
6 5 rexlimivv ( ∃ 𝑥𝐴𝑦𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑋 ∈ V )
7 eqeq1 ( 𝑧 = 𝑋 → ( 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ↔ 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) )
8 7 2rexbidv ( 𝑧 = 𝑋 → ( ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ↔ ∃ 𝑥𝐴𝑦𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) )
9 df-altxp ( 𝐴 ×× 𝐵 ) = { 𝑧 ∣ ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ }
10 8 9 elab2g ( 𝑋 ∈ V → ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ ) )
11 1 6 10 pm5.21nii ( 𝑋 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑋 = ⟪ 𝑥 , 𝑦 ⟫ )