Step |
Hyp |
Ref |
Expression |
1 |
|
elaltxp |
⊢ ( ⟪ 𝑋 , 𝑌 ⟫ ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ) |
2 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 = 𝑌 ) ) |
3 |
|
eqcom |
⊢ ( ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ⟪ 𝑥 , 𝑦 ⟫ = ⟪ 𝑋 , 𝑌 ⟫ ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
4 5
|
altopth |
⊢ ( ⟪ 𝑥 , 𝑦 ⟫ = ⟪ 𝑋 , 𝑌 ⟫ ↔ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) |
7 |
3 6
|
bitri |
⊢ ( ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) |
8 |
7
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) |
9 |
|
risset |
⊢ ( 𝑋 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝑋 ) |
10 |
|
risset |
⊢ ( 𝑌 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑦 = 𝑌 ) |
11 |
9 10
|
anbi12i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝑋 ∧ ∃ 𝑦 ∈ 𝐵 𝑦 = 𝑌 ) ) |
12 |
2 8 11
|
3bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |
13 |
1 12
|
bitri |
⊢ ( ⟪ 𝑋 , 𝑌 ⟫ ∈ ( 𝐴 ×× 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |