| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elaltxp | ⊢ ( ⟪ 𝑋 ,  𝑌 ⟫  ∈  ( 𝐴  ××  𝐵 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ⟪ 𝑋 ,  𝑌 ⟫  =  ⟪ 𝑥 ,  𝑦 ⟫ ) | 
						
							| 2 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑥  =  𝑋  ∧  ∃ 𝑦  ∈  𝐵 𝑦  =  𝑌 ) ) | 
						
							| 3 |  | eqcom | ⊢ ( ⟪ 𝑋 ,  𝑌 ⟫  =  ⟪ 𝑥 ,  𝑦 ⟫  ↔  ⟪ 𝑥 ,  𝑦 ⟫  =  ⟪ 𝑋 ,  𝑌 ⟫ ) | 
						
							| 4 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 5 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 6 | 4 5 | altopth | ⊢ ( ⟪ 𝑥 ,  𝑦 ⟫  =  ⟪ 𝑋 ,  𝑌 ⟫  ↔  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) ) | 
						
							| 7 | 3 6 | bitri | ⊢ ( ⟪ 𝑋 ,  𝑌 ⟫  =  ⟪ 𝑥 ,  𝑦 ⟫  ↔  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) ) | 
						
							| 8 | 7 | 2rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ⟪ 𝑋 ,  𝑌 ⟫  =  ⟪ 𝑥 ,  𝑦 ⟫  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) ) | 
						
							| 9 |  | risset | ⊢ ( 𝑋  ∈  𝐴  ↔  ∃ 𝑥  ∈  𝐴 𝑥  =  𝑋 ) | 
						
							| 10 |  | risset | ⊢ ( 𝑌  ∈  𝐵  ↔  ∃ 𝑦  ∈  𝐵 𝑦  =  𝑌 ) | 
						
							| 11 | 9 10 | anbi12i | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑥  =  𝑋  ∧  ∃ 𝑦  ∈  𝐵 𝑦  =  𝑌 ) ) | 
						
							| 12 | 2 8 11 | 3bitr4i | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ⟪ 𝑋 ,  𝑌 ⟫  =  ⟪ 𝑥 ,  𝑦 ⟫  ↔  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 13 | 1 12 | bitri | ⊢ ( ⟪ 𝑋 ,  𝑌 ⟫  ∈  ( 𝐴  ××  𝐵 )  ↔  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 ) ) |