Metamath Proof Explorer


Theorem altopelaltxp

Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp , there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopelaltxp ( ⟪ 𝑋 , 𝑌 ⟫ ∈ ( 𝐴 ×× 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) )

Proof

Step Hyp Ref Expression
1 elaltxp ( ⟪ 𝑋 , 𝑌 ⟫ ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ )
2 reeanv ( ∃ 𝑥𝐴𝑦𝐵 ( 𝑥 = 𝑋𝑦 = 𝑌 ) ↔ ( ∃ 𝑥𝐴 𝑥 = 𝑋 ∧ ∃ 𝑦𝐵 𝑦 = 𝑌 ) )
3 eqcom ( ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ⟪ 𝑥 , 𝑦 ⟫ = ⟪ 𝑋 , 𝑌 ⟫ )
4 vex 𝑥 ∈ V
5 vex 𝑦 ∈ V
6 4 5 altopth ( ⟪ 𝑥 , 𝑦 ⟫ = ⟪ 𝑋 , 𝑌 ⟫ ↔ ( 𝑥 = 𝑋𝑦 = 𝑌 ) )
7 3 6 bitri ( ⟪ 𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ( 𝑥 = 𝑋𝑦 = 𝑌 ) )
8 7 2rexbii ( ∃ 𝑥𝐴𝑦𝐵𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ∃ 𝑥𝐴𝑦𝐵 ( 𝑥 = 𝑋𝑦 = 𝑌 ) )
9 risset ( 𝑋𝐴 ↔ ∃ 𝑥𝐴 𝑥 = 𝑋 )
10 risset ( 𝑌𝐵 ↔ ∃ 𝑦𝐵 𝑦 = 𝑌 )
11 9 10 anbi12i ( ( 𝑋𝐴𝑌𝐵 ) ↔ ( ∃ 𝑥𝐴 𝑥 = 𝑋 ∧ ∃ 𝑦𝐵 𝑦 = 𝑌 ) )
12 2 8 11 3bitr4i ( ∃ 𝑥𝐴𝑦𝐵𝑋 , 𝑌 ⟫ = ⟪ 𝑥 , 𝑦 ⟫ ↔ ( 𝑋𝐴𝑌𝐵 ) )
13 1 12 bitri ( ⟪ 𝑋 , 𝑌 ⟫ ∈ ( 𝐴 ×× 𝐵 ) ↔ ( 𝑋𝐴𝑌𝐵 ) )