Metamath Proof Explorer


Theorem altxpsspw

Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpsspw ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 elaltxp ( 𝑧 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ )
2 df-altop 𝑥 , 𝑦 ⟫ = { { 𝑥 } , { 𝑥 , { 𝑦 } } }
3 snssi ( 𝑥𝐴 → { 𝑥 } ⊆ 𝐴 )
4 ssun3 ( { 𝑥 } ⊆ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) )
5 3 4 syl ( 𝑥𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) )
6 5 adantr ( ( 𝑥𝐴𝑦𝐵 ) → { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) )
7 elun1 ( 𝑥𝐴𝑥 ∈ ( 𝐴 ∪ 𝒫 𝐵 ) )
8 snssi ( 𝑦𝐵 → { 𝑦 } ⊆ 𝐵 )
9 snex { 𝑦 } ∈ V
10 9 elpw ( { 𝑦 } ∈ 𝒫 𝐵 ↔ { 𝑦 } ⊆ 𝐵 )
11 elun2 ( { 𝑦 } ∈ 𝒫 𝐵 → { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) )
12 10 11 sylbir ( { 𝑦 } ⊆ 𝐵 → { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) )
13 8 12 syl ( 𝑦𝐵 → { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) )
14 7 13 anim12i ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) )
15 vex 𝑥 ∈ V
16 15 9 prss ( ( 𝑥 ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) ↔ { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) )
17 14 16 sylib ( ( 𝑥𝐴𝑦𝐵 ) → { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) )
18 prex { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ V
19 18 elpw ( { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ↔ { { 𝑥 } , { 𝑥 , { 𝑦 } } } ⊆ 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) )
20 snex { 𝑥 } ∈ V
21 prex { 𝑥 , { 𝑦 } } ∈ V
22 20 21 prsspw ( { { 𝑥 } , { 𝑥 , { 𝑦 } } } ⊆ 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) )
23 19 22 bitri ( { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) )
24 6 17 23 sylanbrc ( ( 𝑥𝐴𝑦𝐵 ) → { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) )
25 2 24 eqeltrid ( ( 𝑥𝐴𝑦𝐵 ) → ⟪ 𝑥 , 𝑦 ⟫ ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) )
26 eleq1a ( ⟪ 𝑥 , 𝑦 ⟫ ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) )
27 25 26 syl ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) )
28 27 rexlimivv ( ∃ 𝑥𝐴𝑦𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) )
29 1 28 sylbi ( 𝑧 ∈ ( 𝐴 ×× 𝐵 ) → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) )
30 29 ssriv ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 )