Step |
Hyp |
Ref |
Expression |
1 |
|
elaltxp |
⊢ ( 𝑧 ∈ ( 𝐴 ×× 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ ) |
2 |
|
df-altop |
⊢ ⟪ 𝑥 , 𝑦 ⟫ = { { 𝑥 } , { 𝑥 , { 𝑦 } } } |
3 |
|
snssi |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ 𝐴 ) |
4 |
|
ssun3 |
⊢ ( { 𝑥 } ⊆ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
7 |
|
elun1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
8 |
|
snssi |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ⊆ 𝐵 ) |
9 |
|
snex |
⊢ { 𝑦 } ∈ V |
10 |
9
|
elpw |
⊢ ( { 𝑦 } ∈ 𝒫 𝐵 ↔ { 𝑦 } ⊆ 𝐵 ) |
11 |
|
elun2 |
⊢ ( { 𝑦 } ∈ 𝒫 𝐵 → { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
12 |
10 11
|
sylbir |
⊢ ( { 𝑦 } ⊆ 𝐵 → { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
13 |
8 12
|
syl |
⊢ ( 𝑦 ∈ 𝐵 → { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
14 |
7 13
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) ) |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
15 9
|
prss |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑦 } ∈ ( 𝐴 ∪ 𝒫 𝐵 ) ) ↔ { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
17 |
14 16
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) |
18 |
|
prex |
⊢ { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ V |
19 |
18
|
elpw |
⊢ ( { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ↔ { { 𝑥 } , { 𝑥 , { 𝑦 } } } ⊆ 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) |
20 |
|
snex |
⊢ { 𝑥 } ∈ V |
21 |
|
prex |
⊢ { 𝑥 , { 𝑦 } } ∈ V |
22 |
20 21
|
prsspw |
⊢ ( { { 𝑥 } , { 𝑥 , { 𝑦 } } } ⊆ 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) ) |
23 |
19 22
|
bitri |
⊢ ( { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ↔ ( { 𝑥 } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ∧ { 𝑥 , { 𝑦 } } ⊆ ( 𝐴 ∪ 𝒫 𝐵 ) ) ) |
24 |
6 17 23
|
sylanbrc |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → { { 𝑥 } , { 𝑥 , { 𝑦 } } } ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) |
25 |
2 24
|
eqeltrid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⟪ 𝑥 , 𝑦 ⟫ ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) |
26 |
|
eleq1a |
⊢ ( ⟪ 𝑥 , 𝑦 ⟫ ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) → ( 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) ) |
28 |
27
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ⟪ 𝑥 , 𝑦 ⟫ → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) |
29 |
1 28
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝐴 ×× 𝐵 ) → 𝑧 ∈ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ) |
30 |
29
|
ssriv |
⊢ ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) |