Metamath Proof Explorer


Theorem altxpexg

Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ×× 𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 altxpsspw ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 )
2 pwexg ( 𝐵𝑊 → 𝒫 𝐵 ∈ V )
3 unexg ( ( 𝐴𝑉 ∧ 𝒫 𝐵 ∈ V ) → ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V )
4 2 3 sylan2 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V )
5 pwexg ( ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V → 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V )
6 pwexg ( 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V → 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V )
7 4 5 6 3syl ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V )
8 ssexg ( ( ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) → ( 𝐴 ×× 𝐵 ) ∈ V )
9 1 7 8 sylancr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ×× 𝐵 ) ∈ V )