| Step | Hyp | Ref | Expression | 
						
							| 1 |  | altxpsspw | ⊢ ( 𝐴  ××  𝐵 )  ⊆  𝒫  𝒫  ( 𝐴  ∪  𝒫  𝐵 ) | 
						
							| 2 |  | pwexg | ⊢ ( 𝐵  ∈  𝑊  →  𝒫  𝐵  ∈  V ) | 
						
							| 3 |  | unexg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝒫  𝐵  ∈  V )  →  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V ) | 
						
							| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V ) | 
						
							| 5 |  | pwexg | ⊢ ( ( 𝐴  ∪  𝒫  𝐵 )  ∈  V  →  𝒫  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V ) | 
						
							| 6 |  | pwexg | ⊢ ( 𝒫  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V  →  𝒫  𝒫  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  𝒫  𝒫  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V ) | 
						
							| 8 |  | ssexg | ⊢ ( ( ( 𝐴  ××  𝐵 )  ⊆  𝒫  𝒫  ( 𝐴  ∪  𝒫  𝐵 )  ∧  𝒫  𝒫  ( 𝐴  ∪  𝒫  𝐵 )  ∈  V )  →  ( 𝐴  ××  𝐵 )  ∈  V ) | 
						
							| 9 | 1 7 8 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ××  𝐵 )  ∈  V ) |