| Step |
Hyp |
Ref |
Expression |
| 1 |
|
altxpsspw |
⊢ ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) |
| 2 |
|
pwexg |
⊢ ( 𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ V ) |
| 3 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐵 ∈ V ) → ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) |
| 5 |
|
pwexg |
⊢ ( ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V → 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) |
| 6 |
|
pwexg |
⊢ ( 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V → 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) |
| 7 |
4 5 6
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) |
| 8 |
|
ssexg |
⊢ ( ( ( 𝐴 ×× 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝒫 𝐵 ) ∈ V ) → ( 𝐴 ×× 𝐵 ) ∈ V ) |
| 9 |
1 7 8
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ×× 𝐵 ) ∈ V ) |