Metamath Proof Explorer


Theorem altxpexg

Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012)

Ref Expression
Assertion altxpexg AVBWA××BV

Proof

Step Hyp Ref Expression
1 altxpsspw A××B𝒫𝒫A𝒫B
2 pwexg BW𝒫BV
3 unexg AV𝒫BVA𝒫BV
4 2 3 sylan2 AVBWA𝒫BV
5 pwexg A𝒫BV𝒫A𝒫BV
6 pwexg 𝒫A𝒫BV𝒫𝒫A𝒫BV
7 4 5 6 3syl AVBW𝒫𝒫A𝒫BV
8 ssexg A××B𝒫𝒫A𝒫B𝒫𝒫A𝒫BVA××BV
9 1 7 8 sylancr AVBWA××BV