| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snwf | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 2 |  | df-altop | ⊢ ⟪ 𝐴 ,  𝐵 ⟫  =  { { 𝐴 } ,  { 𝐴 ,  { 𝐵 } } } | 
						
							| 3 | 2 | fveq2i | ⊢ ( rank ‘ ⟪ 𝐴 ,  𝐵 ⟫ )  =  ( rank ‘ { { 𝐴 } ,  { 𝐴 ,  { 𝐵 } } } ) | 
						
							| 4 |  | snwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  { 𝐴 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  { 𝐴 }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 6 |  | prwf | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  { 𝐴 ,  { 𝐵 } }  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 7 |  | rankprb | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐴 ,  { 𝐵 } }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { { 𝐴 } ,  { 𝐴 ,  { 𝐵 } } } )  =  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) ) ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { { 𝐴 } ,  { 𝐴 ,  { 𝐵 } } } )  =  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) ) ) | 
						
							| 9 | 3 8 | eqtrid | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ⟪ 𝐴 ,  𝐵 ⟫ )  =  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) ) ) | 
						
							| 10 |  | snsspr1 | ⊢ { 𝐴 }  ⊆  { 𝐴 ,  { 𝐵 } } | 
						
							| 11 |  | ssequn1 | ⊢ ( { 𝐴 }  ⊆  { 𝐴 ,  { 𝐵 } }  ↔  ( { 𝐴 }  ∪  { 𝐴 ,  { 𝐵 } } )  =  { 𝐴 ,  { 𝐵 } } ) | 
						
							| 12 | 10 11 | mpbi | ⊢ ( { 𝐴 }  ∪  { 𝐴 ,  { 𝐵 } } )  =  { 𝐴 ,  { 𝐵 } } | 
						
							| 13 | 12 | fveq2i | ⊢ ( rank ‘ ( { 𝐴 }  ∪  { 𝐴 ,  { 𝐵 } } ) )  =  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) | 
						
							| 14 |  | rankunb | ⊢ ( ( { 𝐴 }  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐴 ,  { 𝐵 } }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐴 ,  { 𝐵 } } ) )  =  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) ) ) | 
						
							| 15 | 5 6 14 | syl2anc | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ( { 𝐴 }  ∪  { 𝐴 ,  { 𝐵 } } ) )  =  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) ) ) | 
						
							| 16 |  | rankprb | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ { 𝐴 ,  { 𝐵 } } )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 17 | 13 15 16 | 3eqtr3a | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 18 |  | suceq | ⊢ ( ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) )  =  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  →  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  suc  ( ( rank ‘ { 𝐴 } )  ∪  ( rank ‘ { 𝐴 ,  { 𝐵 } } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 20 | 9 19 | eqtrd | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  { 𝐵 }  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ⟪ 𝐴 ,  𝐵 ⟫ )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 21 | 1 20 | sylan2 | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ⟪ 𝐴 ,  𝐵 ⟫ )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) ) ) | 
						
							| 22 |  | ranksnb | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( rank ‘ { 𝐵 } )  =  suc  ( rank ‘ 𝐵 ) ) | 
						
							| 23 | 22 | uneq2d | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 24 |  | suceq | ⊢ ( ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) )  →  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  suc  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 25 |  | suceq | ⊢ ( suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  suc  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) )  →  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 26 | 23 24 25 | 3syl | ⊢ ( 𝐵  ∈  ∪  ( 𝑅1  “  On )  →  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  suc  suc  ( ( rank ‘ 𝐴 )  ∪  ( rank ‘ { 𝐵 } ) )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) | 
						
							| 28 | 21 27 | eqtrd | ⊢ ( ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐵  ∈  ∪  ( 𝑅1  “  On ) )  →  ( rank ‘ ⟪ 𝐴 ,  𝐵 ⟫ )  =  suc  suc  ( ( rank ‘ 𝐴 )  ∪  suc  ( rank ‘ 𝐵 ) ) ) |