| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snwf |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) |
| 2 |
|
df-altop |
⊢ ⟪ 𝐴 , 𝐵 ⟫ = { { 𝐴 } , { 𝐴 , { 𝐵 } } } |
| 3 |
2
|
fveq2i |
⊢ ( rank ‘ ⟪ 𝐴 , 𝐵 ⟫ ) = ( rank ‘ { { 𝐴 } , { 𝐴 , { 𝐵 } } } ) |
| 4 |
|
snwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 |
|
prwf |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → { 𝐴 , { 𝐵 } } ∈ ∪ ( 𝑅1 “ On ) ) |
| 7 |
|
rankprb |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐴 , { 𝐵 } } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { { 𝐴 } , { 𝐴 , { 𝐵 } } } ) = suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { { 𝐴 } , { 𝐴 , { 𝐵 } } } ) = suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) ) |
| 9 |
3 8
|
eqtrid |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ⟪ 𝐴 , 𝐵 ⟫ ) = suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) ) |
| 10 |
|
snsspr1 |
⊢ { 𝐴 } ⊆ { 𝐴 , { 𝐵 } } |
| 11 |
|
ssequn1 |
⊢ ( { 𝐴 } ⊆ { 𝐴 , { 𝐵 } } ↔ ( { 𝐴 } ∪ { 𝐴 , { 𝐵 } } ) = { 𝐴 , { 𝐵 } } ) |
| 12 |
10 11
|
mpbi |
⊢ ( { 𝐴 } ∪ { 𝐴 , { 𝐵 } } ) = { 𝐴 , { 𝐵 } } |
| 13 |
12
|
fveq2i |
⊢ ( rank ‘ ( { 𝐴 } ∪ { 𝐴 , { 𝐵 } } ) ) = ( rank ‘ { 𝐴 , { 𝐵 } } ) |
| 14 |
|
rankunb |
⊢ ( ( { 𝐴 } ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐴 , { 𝐵 } } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐴 , { 𝐵 } } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) ) |
| 15 |
5 6 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ( { 𝐴 } ∪ { 𝐴 , { 𝐵 } } ) ) = ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) ) |
| 16 |
|
rankprb |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ { 𝐴 , { 𝐵 } } ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 17 |
13 15 16
|
3eqtr3a |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 18 |
|
suceq |
⊢ ( ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) = suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) → suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → suc ( ( rank ‘ { 𝐴 } ) ∪ ( rank ‘ { 𝐴 , { 𝐵 } } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 20 |
9 19
|
eqtrd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ { 𝐵 } ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ⟪ 𝐴 , 𝐵 ⟫ ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 21 |
1 20
|
sylan2 |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ⟪ 𝐴 , 𝐵 ⟫ ) = suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) ) |
| 22 |
|
ranksnb |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝐵 } ) = suc ( rank ‘ 𝐵 ) ) |
| 23 |
22
|
uneq2d |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 24 |
|
suceq |
⊢ ( ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) → suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = suc ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 25 |
|
suceq |
⊢ ( suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = suc ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) → suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 26 |
23 24 25
|
3syl |
⊢ ( 𝐵 ∈ ∪ ( 𝑅1 “ On ) → suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → suc suc ( ( rank ‘ 𝐴 ) ∪ ( rank ‘ { 𝐵 } ) ) = suc suc ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |
| 28 |
21 27
|
eqtrd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ ⟪ 𝐴 , 𝐵 ⟫ ) = suc suc ( ( rank ‘ 𝐴 ) ∪ suc ( rank ‘ 𝐵 ) ) ) |