| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
mulm1 |
|- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
| 3 |
2
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u 1 x. A ) = -u A ) |
| 4 |
|
mulm1 |
|- ( B e. CC -> ( -u 1 x. B ) = -u B ) |
| 5 |
4
|
ad2antrl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u 1 x. B ) = -u B ) |
| 6 |
3 5
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( -u 1 x. A ) F ( -u 1 x. B ) ) = ( -u A F -u B ) ) |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 9 |
7 8
|
pm3.2i |
|- ( -u 1 e. CC /\ -u 1 =/= 0 ) |
| 10 |
1
|
angcan |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ ( -u 1 e. CC /\ -u 1 =/= 0 ) ) -> ( ( -u 1 x. A ) F ( -u 1 x. B ) ) = ( A F B ) ) |
| 11 |
9 10
|
mp3an3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( -u 1 x. A ) F ( -u 1 x. B ) ) = ( A F B ) ) |
| 12 |
6 11
|
eqtr3d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( -u A F -u B ) = ( A F B ) ) |