Metamath Proof Explorer


Theorem angneg

Description: Cancel a negative sign in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
Assertion angneg ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐴 𝐹 - 𝐵 ) = ( 𝐴 𝐹 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ang.1 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) )
2 mulm1 ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 )
3 2 ad2antrr ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 1 · 𝐴 ) = - 𝐴 )
4 mulm1 ( 𝐵 ∈ ℂ → ( - 1 · 𝐵 ) = - 𝐵 )
5 4 ad2antrl ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 1 · 𝐵 ) = - 𝐵 )
6 3 5 oveq12d ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( - 1 · 𝐴 ) 𝐹 ( - 1 · 𝐵 ) ) = ( - 𝐴 𝐹 - 𝐵 ) )
7 neg1cn - 1 ∈ ℂ
8 neg1ne0 - 1 ≠ 0
9 7 8 pm3.2i ( - 1 ∈ ℂ ∧ - 1 ≠ 0 )
10 1 angcan ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ) → ( ( - 1 · 𝐴 ) 𝐹 ( - 1 · 𝐵 ) ) = ( 𝐴 𝐹 𝐵 ) )
11 9 10 mp3an3 ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( - 1 · 𝐴 ) 𝐹 ( - 1 · 𝐵 ) ) = ( 𝐴 𝐹 𝐵 ) )
12 6 11 eqtr3d ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐴 𝐹 - 𝐵 ) = ( 𝐴 𝐹 𝐵 ) )