| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
| 2 |
|
mulm1 |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 3 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 4 |
|
mulm1 |
⊢ ( 𝐵 ∈ ℂ → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 5 |
4
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 6 |
3 5
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( - 1 · 𝐴 ) 𝐹 ( - 1 · 𝐵 ) ) = ( - 𝐴 𝐹 - 𝐵 ) ) |
| 7 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 8 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 9 |
7 8
|
pm3.2i |
⊢ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) |
| 10 |
1
|
angcan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ) ) → ( ( - 1 · 𝐴 ) 𝐹 ( - 1 · 𝐵 ) ) = ( 𝐴 𝐹 𝐵 ) ) |
| 11 |
9 10
|
mp3an3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( - 1 · 𝐴 ) 𝐹 ( - 1 · 𝐵 ) ) = ( 𝐴 𝐹 𝐵 ) ) |
| 12 |
6 11
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐴 𝐹 - 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |