Metamath Proof Explorer


Theorem aoveq123d

Description: Equality deduction for operation value, analogous to oveq123d . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses aoveq123d.1
|- ( ph -> F = G )
aoveq123d.2
|- ( ph -> A = B )
aoveq123d.3
|- ( ph -> C = D )
Assertion aoveq123d
|- ( ph -> (( A F C )) = (( B G D )) )

Proof

Step Hyp Ref Expression
1 aoveq123d.1
 |-  ( ph -> F = G )
2 aoveq123d.2
 |-  ( ph -> A = B )
3 aoveq123d.3
 |-  ( ph -> C = D )
4 2 3 opeq12d
 |-  ( ph -> <. A , C >. = <. B , D >. )
5 1 4 afveq12d
 |-  ( ph -> ( F ''' <. A , C >. ) = ( G ''' <. B , D >. ) )
6 df-aov
 |-  (( A F C )) = ( F ''' <. A , C >. )
7 df-aov
 |-  (( B G D )) = ( G ''' <. B , D >. )
8 5 6 7 3eqtr4g
 |-  ( ph -> (( A F C )) = (( B G D )) )