Description: Equality deduction for operation value, analogous to oveq123d . (Contributed by Alexander van der Vekens, 26-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aoveq123d.1 | |- ( ph -> F = G ) |
|
aoveq123d.2 | |- ( ph -> A = B ) |
||
aoveq123d.3 | |- ( ph -> C = D ) |
||
Assertion | aoveq123d | |- ( ph -> (( A F C )) = (( B G D )) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aoveq123d.1 | |- ( ph -> F = G ) |
|
2 | aoveq123d.2 | |- ( ph -> A = B ) |
|
3 | aoveq123d.3 | |- ( ph -> C = D ) |
|
4 | 2 3 | opeq12d | |- ( ph -> <. A , C >. = <. B , D >. ) |
5 | 1 4 | afveq12d | |- ( ph -> ( F ''' <. A , C >. ) = ( G ''' <. B , D >. ) ) |
6 | df-aov | |- (( A F C )) = ( F ''' <. A , C >. ) |
|
7 | df-aov | |- (( B G D )) = ( G ''' <. B , D >. ) |
|
8 | 5 6 7 | 3eqtr4g | |- ( ph -> (( A F C )) = (( B G D )) ) |