Description: Equality deduction for operation value, analogous to oveq123d . (Contributed by Alexander van der Vekens, 26-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aoveq123d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| aoveq123d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| aoveq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | aoveq123d | ⊢ ( 𝜑 → (( 𝐴 𝐹 𝐶 )) = (( 𝐵 𝐺 𝐷 )) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aoveq123d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| 2 | aoveq123d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | aoveq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 4 | 2 3 | opeq12d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 〉 = 〈 𝐵 , 𝐷 〉 ) |
| 5 | 1 4 | afveq12d | ⊢ ( 𝜑 → ( 𝐹 ''' 〈 𝐴 , 𝐶 〉 ) = ( 𝐺 ''' 〈 𝐵 , 𝐷 〉 ) ) |
| 6 | df-aov | ⊢ (( 𝐴 𝐹 𝐶 )) = ( 𝐹 ''' 〈 𝐴 , 𝐶 〉 ) | |
| 7 | df-aov | ⊢ (( 𝐵 𝐺 𝐷 )) = ( 𝐺 ''' 〈 𝐵 , 𝐷 〉 ) | |
| 8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → (( 𝐴 𝐹 𝐶 )) = (( 𝐵 𝐺 𝐷 )) ) |