Description: The alternative value of the operation on an ordered pair equals the operation's value at this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | aovnuoveq | |- ( (( A F B )) =/= _V -> (( A F B )) = ( A F B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov | |- (( A F B )) = ( F ''' <. A , B >. ) |
|
2 | 1 | neeq1i | |- ( (( A F B )) =/= _V <-> ( F ''' <. A , B >. ) =/= _V ) |
3 | afvnufveq | |- ( ( F ''' <. A , B >. ) =/= _V -> ( F ''' <. A , B >. ) = ( F ` <. A , B >. ) ) |
|
4 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
5 | 3 1 4 | 3eqtr4g | |- ( ( F ''' <. A , B >. ) =/= _V -> (( A F B )) = ( A F B ) ) |
6 | 2 5 | sylbi | |- ( (( A F B )) =/= _V -> (( A F B )) = ( A F B ) ) |