Metamath Proof Explorer


Theorem aovnuoveq

Description: The alternative value of the operation on an ordered pair equals the operation's value at this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovnuoveq A F B V A F B = A F B

Proof

Step Hyp Ref Expression
1 df-aov A F B = F ''' A B
2 1 neeq1i A F B V F ''' A B V
3 afvnufveq F ''' A B V F ''' A B = F A B
4 df-ov A F B = F A B
5 3 1 4 3eqtr4g F ''' A B V A F B = A F B
6 2 5 sylbi A F B V A F B = A F B