Metamath Proof Explorer


Theorem aovovn0oveq

Description: If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovovn0oveq
|- ( ( A F B ) =/= (/) -> (( A F B )) = ( A F B ) )

Proof

Step Hyp Ref Expression
1 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
2 1 neeq1i
 |-  ( ( A F B ) =/= (/) <-> ( F ` <. A , B >. ) =/= (/) )
3 afvfvn0fveq
 |-  ( ( F ` <. A , B >. ) =/= (/) -> ( F ''' <. A , B >. ) = ( F ` <. A , B >. ) )
4 df-aov
 |-  (( A F B )) = ( F ''' <. A , B >. )
5 3 4 1 3eqtr4g
 |-  ( ( F ` <. A , B >. ) =/= (/) -> (( A F B )) = ( A F B ) )
6 2 5 sylbi
 |-  ( ( A F B ) =/= (/) -> (( A F B )) = ( A F B ) )