Metamath Proof Explorer


Theorem aovovn0oveq

Description: If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovovn0oveq A F B A F B = A F B

Proof

Step Hyp Ref Expression
1 df-ov A F B = F A B
2 1 neeq1i A F B F A B
3 afvfvn0fveq F A B F ''' A B = F A B
4 df-aov A F B = F ''' A B
5 3 4 1 3eqtr4g F A B A F B = A F B
6 2 5 sylbi A F B A F B = A F B