Metamath Proof Explorer


Theorem aovovn0oveq

Description: If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovovn0oveq ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ → (( 𝐴 𝐹 𝐵 )) = ( 𝐴 𝐹 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
2 1 neeq1i ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ ↔ ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ≠ ∅ )
3 afvfvn0fveq ( ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ≠ ∅ → ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
4 df-aov (( 𝐴 𝐹 𝐵 )) = ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ )
5 3 4 1 3eqtr4g ( ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ≠ ∅ → (( 𝐴 𝐹 𝐵 )) = ( 𝐴 𝐹 𝐵 ) )
6 2 5 sylbi ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ → (( 𝐴 𝐹 𝐵 )) = ( 𝐴 𝐹 𝐵 ) )