| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-asin |
|- arcsin = ( x e. CC |-> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) ) |
| 2 |
|
negicn |
|- -u _i e. CC |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
|
mulcl |
|- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 5 |
3 4
|
mpan |
|- ( x e. CC -> ( _i x. x ) e. CC ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
sqcl |
|- ( x e. CC -> ( x ^ 2 ) e. CC ) |
| 8 |
|
subcl |
|- ( ( 1 e. CC /\ ( x ^ 2 ) e. CC ) -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 9 |
6 7 8
|
sylancr |
|- ( x e. CC -> ( 1 - ( x ^ 2 ) ) e. CC ) |
| 10 |
9
|
sqrtcld |
|- ( x e. CC -> ( sqrt ` ( 1 - ( x ^ 2 ) ) ) e. CC ) |
| 11 |
5 10
|
addcld |
|- ( x e. CC -> ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) e. CC ) |
| 12 |
|
asinlem |
|- ( x e. CC -> ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) =/= 0 ) |
| 13 |
11 12
|
logcld |
|- ( x e. CC -> ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) e. CC ) |
| 14 |
|
mulcl |
|- ( ( -u _i e. CC /\ ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) e. CC ) -> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) e. CC ) |
| 15 |
2 13 14
|
sylancr |
|- ( x e. CC -> ( -u _i x. ( log ` ( ( _i x. x ) + ( sqrt ` ( 1 - ( x ^ 2 ) ) ) ) ) ) e. CC ) |
| 16 |
1 15
|
fmpti |
|- arcsin : CC --> CC |