Metamath Proof Explorer


Theorem asinf

Description: Domain and range of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion asinf arcsin : ℂ ⟶ ℂ

Proof

Step Hyp Ref Expression
1 df-asin arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) )
2 negicn - i ∈ ℂ
3 ax-icn i ∈ ℂ
4 mulcl ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ )
5 3 4 mpan ( 𝑥 ∈ ℂ → ( i · 𝑥 ) ∈ ℂ )
6 ax-1cn 1 ∈ ℂ
7 sqcl ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 2 ) ∈ ℂ )
8 subcl ( ( 1 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ )
9 6 7 8 sylancr ( 𝑥 ∈ ℂ → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ )
10 9 sqrtcld ( 𝑥 ∈ ℂ → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ∈ ℂ )
11 5 10 addcld ( 𝑥 ∈ ℂ → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ∈ ℂ )
12 asinlem ( 𝑥 ∈ ℂ → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ≠ 0 )
13 11 12 logcld ( 𝑥 ∈ ℂ → ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ∈ ℂ )
14 mulcl ( ( - i ∈ ℂ ∧ ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ∈ ℂ ) → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ∈ ℂ )
15 2 13 14 sylancr ( 𝑥 ∈ ℂ → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ∈ ℂ )
16 1 15 fmpti arcsin : ℂ ⟶ ℂ