| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 2 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 |  | sqcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 6 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  −  ( 𝐴 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 8 | 7 | sqrtcld | ⊢ ( 𝐴  ∈  ℂ  →  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 9 | 3 8 | subnegd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 )  −  - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  =  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) ) | 
						
							| 10 | 8 | negcld | ⊢ ( 𝐴  ∈  ℂ  →  - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 11 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 12 |  | 0cnd | ⊢ ( 𝐴  ∈  ℂ  →  0  ∈  ℂ ) | 
						
							| 13 |  | 1cnd | ⊢ ( 𝐴  ∈  ℂ  →  1  ∈  ℂ ) | 
						
							| 14 |  | subcan2 | ⊢ ( ( 0  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( ( 0  −  ( 𝐴 ↑ 2 ) )  =  ( 1  −  ( 𝐴 ↑ 2 ) )  ↔  0  =  1 ) ) | 
						
							| 15 | 14 | necon3bid | ⊢ ( ( 0  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( ( 0  −  ( 𝐴 ↑ 2 ) )  ≠  ( 1  −  ( 𝐴 ↑ 2 ) )  ↔  0  ≠  1 ) ) | 
						
							| 16 | 12 13 5 15 | syl3anc | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 0  −  ( 𝐴 ↑ 2 ) )  ≠  ( 1  −  ( 𝐴 ↑ 2 ) )  ↔  0  ≠  1 ) ) | 
						
							| 17 | 11 16 | mpbiri | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  −  ( 𝐴 ↑ 2 ) )  ≠  ( 1  −  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 18 |  | sqmul | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( i  ·  𝐴 ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 19 | 1 18 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 ) ↑ 2 )  =  ( ( i ↑ 2 )  ·  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 20 |  | i2 | ⊢ ( i ↑ 2 )  =  - 1 | 
						
							| 21 | 20 | oveq1i | ⊢ ( ( i ↑ 2 )  ·  ( 𝐴 ↑ 2 ) )  =  ( - 1  ·  ( 𝐴 ↑ 2 ) ) | 
						
							| 22 | 5 | mulm1d | ⊢ ( 𝐴  ∈  ℂ  →  ( - 1  ·  ( 𝐴 ↑ 2 ) )  =  - ( 𝐴 ↑ 2 ) ) | 
						
							| 23 | 21 22 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i ↑ 2 )  ·  ( 𝐴 ↑ 2 ) )  =  - ( 𝐴 ↑ 2 ) ) | 
						
							| 24 | 19 23 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 ) ↑ 2 )  =  - ( 𝐴 ↑ 2 ) ) | 
						
							| 25 |  | df-neg | ⊢ - ( 𝐴 ↑ 2 )  =  ( 0  −  ( 𝐴 ↑ 2 ) ) | 
						
							| 26 | 24 25 | eqtrdi | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 ) ↑ 2 )  =  ( 0  −  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 27 |  | sqneg | ⊢ ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  ∈  ℂ  →  ( - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 28 | 8 27 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  =  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 29 | 7 | sqsqrtd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  =  ( 1  −  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 30 | 28 29 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  =  ( 1  −  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 31 | 17 26 30 | 3netr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 ) ↑ 2 )  ≠  ( - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( ( i  ·  𝐴 )  =  - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) )  →  ( ( i  ·  𝐴 ) ↑ 2 )  =  ( - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 33 | 32 | necon3i | ⊢ ( ( ( i  ·  𝐴 ) ↑ 2 )  ≠  ( - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ↑ 2 )  →  ( i  ·  𝐴 )  ≠  - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 34 | 31 33 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ≠  - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) ) | 
						
							| 35 | 3 10 34 | subne0d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 )  −  - ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ≠  0 ) | 
						
							| 36 | 9 35 | eqnetrrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( i  ·  𝐴 )  +  ( √ ‘ ( 1  −  ( 𝐴 ↑ 2 ) ) ) )  ≠  0 ) |