Metamath Proof Explorer


Theorem atncvrN

Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atncvr.c
|- C = ( 
atncvr.a
|- A = ( Atoms ` K )
Assertion atncvrN
|- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P C Q )

Proof

Step Hyp Ref Expression
1 atncvr.c
 |-  C = ( 
2 atncvr.a
 |-  A = ( Atoms ` K )
3 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
4 3 2 atn0
 |-  ( ( K e. AtLat /\ P e. A ) -> P =/= ( 0. ` K ) )
5 4 3adant3
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> P =/= ( 0. ` K ) )
6 eqid
 |-  ( Base ` K ) = ( Base ` K )
7 6 2 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
8 eqid
 |-  ( le ` K ) = ( le ` K )
9 6 8 3 1 2 atcvreq0
 |-  ( ( K e. AtLat /\ P e. ( Base ` K ) /\ Q e. A ) -> ( P C Q <-> P = ( 0. ` K ) ) )
10 7 9 syl3an2
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P C Q <-> P = ( 0. ` K ) ) )
11 10 necon3bbid
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P C Q <-> P =/= ( 0. ` K ) ) )
12 5 11 mpbird
 |-  ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> -. P C Q )