Metamath Proof Explorer


Axiom ax-flt

Description: This factoid is e.g. useful for nrt2irr . Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025) (New usage is discouraged.)

Ref Expression
Assertion ax-flt
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. NN /\ Y e. NN /\ Z e. NN ) ) -> ( ( X ^ N ) + ( Y ^ N ) ) =/= ( Z ^ N ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cN
 |-  N
1 cuz
 |-  ZZ>=
2 c3
 |-  3
3 2 1 cfv
 |-  ( ZZ>= ` 3 )
4 0 3 wcel
 |-  N e. ( ZZ>= ` 3 )
5 cX
 |-  X
6 cn
 |-  NN
7 5 6 wcel
 |-  X e. NN
8 cY
 |-  Y
9 8 6 wcel
 |-  Y e. NN
10 cZ
 |-  Z
11 10 6 wcel
 |-  Z e. NN
12 7 9 11 w3a
 |-  ( X e. NN /\ Y e. NN /\ Z e. NN )
13 4 12 wa
 |-  ( N e. ( ZZ>= ` 3 ) /\ ( X e. NN /\ Y e. NN /\ Z e. NN ) )
14 cexp
 |-  ^
15 5 0 14 co
 |-  ( X ^ N )
16 caddc
 |-  +
17 8 0 14 co
 |-  ( Y ^ N )
18 15 17 16 co
 |-  ( ( X ^ N ) + ( Y ^ N ) )
19 10 0 14 co
 |-  ( Z ^ N )
20 18 19 wne
 |-  ( ( X ^ N ) + ( Y ^ N ) ) =/= ( Z ^ N )
21 13 20 wi
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. NN /\ Y e. NN /\ Z e. NN ) ) -> ( ( X ^ N ) + ( Y ^ N ) ) =/= ( Z ^ N ) )