Database
GUIDES AND MISCELLANEA
Humor
April Fool's theorem
ax-flt
Metamath Proof Explorer
Description: This factoid is e.g. useful for nrt2irr . Andrew has a proof, I'll have
a go at formalizing it after my coffee break. In the mean time let's add
it as an axiom. (Contributed by Prof. Loof Lirpa , 1-Apr-2025)
(New usage is discouraged.)
Ref
Expression
Assertion
ax-flt
⊢ N ∈ ℤ ≥ 3 ∧ X ∈ ℕ ∧ Y ∈ ℕ ∧ Z ∈ ℕ → X N + Y N ≠ Z N
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cN
class N
1
cuz
class ℤ ≥
2
c3
class 3
3
2 1
cfv
class ℤ ≥ 3
4
0 3
wcel
wff N ∈ ℤ ≥ 3
5
cX
class X
6
cn
class ℕ
7
5 6
wcel
wff X ∈ ℕ
8
cY
class Y
9
8 6
wcel
wff Y ∈ ℕ
10
cZ
class Z
11
10 6
wcel
wff Z ∈ ℕ
12
7 9 11
w3a
wff X ∈ ℕ ∧ Y ∈ ℕ ∧ Z ∈ ℕ
13
4 12
wa
wff N ∈ ℤ ≥ 3 ∧ X ∈ ℕ ∧ Y ∈ ℕ ∧ Z ∈ ℕ
14
cexp
class ^
15
5 0 14
co
class X N
16
caddc
class +
17
8 0 14
co
class Y N
18
15 17 16
co
class X N + Y N
19
10 0 14
co
class Z N
20
18 19
wne
wff X N + Y N ≠ Z N
21
13 20
wi
wff N ∈ ℤ ≥ 3 ∧ X ∈ ℕ ∧ Y ∈ ℕ ∧ Z ∈ ℕ → X N + Y N ≠ Z N