Metamath Proof Explorer


Axiom ax-flt

Description: This factoid is e.g. useful for nrt2irr . Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025) (New usage is discouraged.)

Ref Expression
Assertion ax-flt N3XYZXN+YNZN

Detailed syntax breakdown

Step Hyp Ref Expression
0 cN classN
1 cuz class
2 c3 class3
3 2 1 cfv class3
4 0 3 wcel wffN3
5 cX classX
6 cn class
7 5 6 wcel wffX
8 cY classY
9 8 6 wcel wffY
10 cZ classZ
11 10 6 wcel wffZ
12 7 9 11 w3a wffXYZ
13 4 12 wa wffN3XYZ
14 cexp class^
15 5 0 14 co classXN
16 caddc class+
17 8 0 14 co classYN
18 15 17 16 co classXN+YN
19 10 0 14 co classZN
20 18 19 wne wffXN+YNZN
21 13 20 wi wffN3XYZXN+YNZN