Metamath Proof Explorer


Axiom ax-flt

Description: This factoid is e.g. useful for nrt2irr . Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025) (New usage is discouraged.)

Ref Expression
Assertion ax-flt ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ ) ) → ( ( 𝑋𝑁 ) + ( 𝑌𝑁 ) ) ≠ ( 𝑍𝑁 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cN 𝑁
1 cuz
2 c3 3
3 2 1 cfv ( ℤ ‘ 3 )
4 0 3 wcel 𝑁 ∈ ( ℤ ‘ 3 )
5 cX 𝑋
6 cn
7 5 6 wcel 𝑋 ∈ ℕ
8 cY 𝑌
9 8 6 wcel 𝑌 ∈ ℕ
10 cZ 𝑍
11 10 6 wcel 𝑍 ∈ ℕ
12 7 9 11 w3a ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ )
13 4 12 wa ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ ) )
14 cexp
15 5 0 14 co ( 𝑋𝑁 )
16 caddc +
17 8 0 14 co ( 𝑌𝑁 )
18 15 17 16 co ( ( 𝑋𝑁 ) + ( 𝑌𝑁 ) )
19 10 0 14 co ( 𝑍𝑁 )
20 18 19 wne ( ( 𝑋𝑁 ) + ( 𝑌𝑁 ) ) ≠ ( 𝑍𝑁 )
21 13 20 wi ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ ) ) → ( ( 𝑋𝑁 ) + ( 𝑌𝑁 ) ) ≠ ( 𝑍𝑁 ) )