Database
GUIDES AND MISCELLANEA
Humor
April Fool's theorem
ax-flt
Metamath Proof Explorer
Description: This factoid is e.g. useful for nrt2irr . Andrew has a proof, I'll have
a go at formalizing it after my coffee break. In the mean time let's add
it as an axiom. (Contributed by Prof. Loof Lirpa , 1-Apr-2025)
(New usage is discouraged.)
Ref
Expression
Assertion
ax-flt
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ ) ) → ( ( 𝑋 ↑ 𝑁 ) + ( 𝑌 ↑ 𝑁 ) ) ≠ ( 𝑍 ↑ 𝑁 ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cN
⊢ 𝑁
1
cuz
⊢ ℤ≥
2
c3
⊢ 3
3
2 1
cfv
⊢ ( ℤ≥ ‘ 3 )
4
0 3
wcel
⊢ 𝑁 ∈ ( ℤ≥ ‘ 3 )
5
cX
⊢ 𝑋
6
cn
⊢ ℕ
7
5 6
wcel
⊢ 𝑋 ∈ ℕ
8
cY
⊢ 𝑌
9
8 6
wcel
⊢ 𝑌 ∈ ℕ
10
cZ
⊢ 𝑍
11
10 6
wcel
⊢ 𝑍 ∈ ℕ
12
7 9 11
w3a
⊢ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ )
13
4 12
wa
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ ) )
14
cexp
⊢ ↑
15
5 0 14
co
⊢ ( 𝑋 ↑ 𝑁 )
16
caddc
⊢ +
17
8 0 14
co
⊢ ( 𝑌 ↑ 𝑁 )
18
15 17 16
co
⊢ ( ( 𝑋 ↑ 𝑁 ) + ( 𝑌 ↑ 𝑁 ) )
19
10 0 14
co
⊢ ( 𝑍 ↑ 𝑁 )
20
18 19
wne
⊢ ( ( 𝑋 ↑ 𝑁 ) + ( 𝑌 ↑ 𝑁 ) ) ≠ ( 𝑍 ↑ 𝑁 )
21
13 20
wi
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ ) ) → ( ( 𝑋 ↑ 𝑁 ) + ( 𝑌 ↑ 𝑁 ) ) ≠ ( 𝑍 ↑ 𝑁 ) )