| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 2 ∈ ℂ ) |
| 2 |
|
simprr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑞 ∈ ℕ ) |
| 3 |
2
|
nncnd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑞 ∈ ℂ ) |
| 4 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑁 ∈ ℕ ) |
| 6 |
5
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑁 ∈ ℕ0 ) |
| 7 |
3 6
|
expcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑞 ↑ 𝑁 ) ∈ ℂ ) |
| 8 |
2
|
nnne0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑞 ≠ 0 ) |
| 9 |
5
|
nnzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑁 ∈ ℤ ) |
| 10 |
3 8 9
|
expne0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑞 ↑ 𝑁 ) ≠ 0 ) |
| 11 |
1 7 10
|
divcan4d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 2 · ( 𝑞 ↑ 𝑁 ) ) / ( 𝑞 ↑ 𝑁 ) ) = 2 ) |
| 12 |
7
|
2timesd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 · ( 𝑞 ↑ 𝑁 ) ) = ( ( 𝑞 ↑ 𝑁 ) + ( 𝑞 ↑ 𝑁 ) ) ) |
| 13 |
|
simpl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 14 |
|
simprl |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑝 ∈ ℕ ) |
| 15 |
|
ax-flt |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑞 ∈ ℕ ∧ 𝑞 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑁 ) + ( 𝑞 ↑ 𝑁 ) ) ≠ ( 𝑝 ↑ 𝑁 ) ) |
| 16 |
13 2 2 14 15
|
syl13anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑁 ) + ( 𝑞 ↑ 𝑁 ) ) ≠ ( 𝑝 ↑ 𝑁 ) ) |
| 17 |
12 16
|
eqnetrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 · ( 𝑞 ↑ 𝑁 ) ) ≠ ( 𝑝 ↑ 𝑁 ) ) |
| 18 |
1 7
|
mulcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 · ( 𝑞 ↑ 𝑁 ) ) ∈ ℂ ) |
| 19 |
14
|
nncnd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑝 ∈ ℂ ) |
| 20 |
19 6
|
expcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑁 ) ∈ ℂ ) |
| 21 |
|
div11 |
⊢ ( ( ( 2 · ( 𝑞 ↑ 𝑁 ) ) ∈ ℂ ∧ ( 𝑝 ↑ 𝑁 ) ∈ ℂ ∧ ( ( 𝑞 ↑ 𝑁 ) ∈ ℂ ∧ ( 𝑞 ↑ 𝑁 ) ≠ 0 ) ) → ( ( ( 2 · ( 𝑞 ↑ 𝑁 ) ) / ( 𝑞 ↑ 𝑁 ) ) = ( ( 𝑝 ↑ 𝑁 ) / ( 𝑞 ↑ 𝑁 ) ) ↔ ( 2 · ( 𝑞 ↑ 𝑁 ) ) = ( 𝑝 ↑ 𝑁 ) ) ) |
| 22 |
18 20 7 10 21
|
syl112anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( 2 · ( 𝑞 ↑ 𝑁 ) ) / ( 𝑞 ↑ 𝑁 ) ) = ( ( 𝑝 ↑ 𝑁 ) / ( 𝑞 ↑ 𝑁 ) ) ↔ ( 2 · ( 𝑞 ↑ 𝑁 ) ) = ( 𝑝 ↑ 𝑁 ) ) ) |
| 23 |
22
|
necon3bid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( 2 · ( 𝑞 ↑ 𝑁 ) ) / ( 𝑞 ↑ 𝑁 ) ) ≠ ( ( 𝑝 ↑ 𝑁 ) / ( 𝑞 ↑ 𝑁 ) ) ↔ ( 2 · ( 𝑞 ↑ 𝑁 ) ) ≠ ( 𝑝 ↑ 𝑁 ) ) ) |
| 24 |
17 23
|
mpbird |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 2 · ( 𝑞 ↑ 𝑁 ) ) / ( 𝑞 ↑ 𝑁 ) ) ≠ ( ( 𝑝 ↑ 𝑁 ) / ( 𝑞 ↑ 𝑁 ) ) ) |
| 25 |
11 24
|
eqnetrrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 2 ≠ ( ( 𝑝 ↑ 𝑁 ) / ( 𝑞 ↑ 𝑁 ) ) ) |
| 26 |
19 3 8 6
|
expdivd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑝 / 𝑞 ) ↑ 𝑁 ) = ( ( 𝑝 ↑ 𝑁 ) / ( 𝑞 ↑ 𝑁 ) ) ) |
| 27 |
25 26
|
neeqtrrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 2 ≠ ( ( 𝑝 / 𝑞 ) ↑ 𝑁 ) ) |
| 28 |
19 3 8
|
divcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℂ ) |
| 29 |
14
|
nnne0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑝 ≠ 0 ) |
| 30 |
19 3 29 8
|
divne0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ≠ 0 ) |
| 31 |
28 30 9
|
cxpexpzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) = ( ( 𝑝 / 𝑞 ) ↑ 𝑁 ) ) |
| 32 |
27 31
|
neeqtrrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 2 ≠ ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ) |
| 33 |
|
2re |
⊢ 2 ∈ ℝ |
| 34 |
33
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 2 ∈ ℝ ) |
| 35 |
|
0le2 |
⊢ 0 ≤ 2 |
| 36 |
35
|
a1i |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 0 ≤ 2 ) |
| 37 |
14
|
nnrpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑝 ∈ ℝ+ ) |
| 38 |
2
|
nnrpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑞 ∈ ℝ+ ) |
| 39 |
37 38
|
rpdivcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℝ+ ) |
| 40 |
39
|
rpred |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 𝑝 / 𝑞 ) ∈ ℝ ) |
| 41 |
39
|
rpge0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 0 ≤ ( 𝑝 / 𝑞 ) ) |
| 42 |
5
|
nnred |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) |
| 43 |
40 41 42
|
recxpcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ∈ ℝ ) |
| 44 |
40 41 42
|
cxpge0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 0 ≤ ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ) |
| 45 |
5
|
nnrpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → 𝑁 ∈ ℝ+ ) |
| 46 |
45
|
rpreccld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 1 / 𝑁 ) ∈ ℝ+ ) |
| 47 |
34 36 43 44 46
|
recxpf1lem |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 = ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↔ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↑𝑐 ( 1 / 𝑁 ) ) ) ) |
| 48 |
47
|
necon3bid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 ≠ ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↔ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ≠ ( ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↑𝑐 ( 1 / 𝑁 ) ) ) ) |
| 49 |
32 48
|
mpbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ≠ ( ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↑𝑐 ( 1 / 𝑁 ) ) ) |
| 50 |
5
|
nnrecred |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 1 / 𝑁 ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 1 / 𝑁 ) ∈ ℂ ) |
| 52 |
28 51
|
cxpcld |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℂ ) |
| 53 |
28 30 51
|
cxpne0d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ≠ 0 ) |
| 54 |
52 53 9
|
cxpexpzd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ↑𝑐 𝑁 ) = ( ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) |
| 55 |
|
cxpcom |
⊢ ( ( ( 𝑝 / 𝑞 ) ∈ ℝ+ ∧ ( 1 / 𝑁 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ↑𝑐 𝑁 ) = ( ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↑𝑐 ( 1 / 𝑁 ) ) ) |
| 56 |
39 50 42 55
|
syl3anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ↑𝑐 𝑁 ) = ( ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↑𝑐 ( 1 / 𝑁 ) ) ) |
| 57 |
|
cxproot |
⊢ ( ( ( 𝑝 / 𝑞 ) ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = ( 𝑝 / 𝑞 ) ) |
| 58 |
28 5 57
|
syl2anc |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( 𝑝 / 𝑞 ) ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = ( 𝑝 / 𝑞 ) ) |
| 59 |
54 56 58
|
3eqtr3d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( ( ( 𝑝 / 𝑞 ) ↑𝑐 𝑁 ) ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) |
| 60 |
49 59
|
neeqtrd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ≠ ( 𝑝 / 𝑞 ) ) |
| 61 |
60
|
neneqd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) ) → ¬ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) |
| 62 |
61
|
ralrimivva |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ℕ ¬ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) |
| 63 |
|
ralnex2 |
⊢ ( ∀ 𝑝 ∈ ℕ ∀ 𝑞 ∈ ℕ ¬ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ↔ ¬ ∃ 𝑝 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) |
| 64 |
62 63
|
sylib |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ¬ ∃ 𝑝 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) |
| 65 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 66 |
65
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ∈ ℝ+ ) |
| 67 |
4
|
nnrecred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
| 68 |
66 67
|
cxpgt0d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 0 < ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ) |
| 69 |
68
|
biantrud |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ↔ ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ∧ 0 < ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ) ) ) |
| 70 |
|
elpqb |
⊢ ( ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ∧ 0 < ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ) ↔ ∃ 𝑝 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) |
| 71 |
69 70
|
bitrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ↔ ∃ 𝑝 ∈ ℕ ∃ 𝑞 ∈ ℕ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) = ( 𝑝 / 𝑞 ) ) ) |
| 72 |
64 71
|
mtbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ¬ ( 2 ↑𝑐 ( 1 / 𝑁 ) ) ∈ ℚ ) |